

Improving Patent Translation using Bilingual Term

Extraction and Re-tokenization for Chinese—Japanese Wei YANG and Yves LEPAGE

Graduate School of Information, Production and Systems Waseda University

We describe a method to improve Chinese—Japanese statistical machine translation (SMT) of patents by re-tokenizing the training corpus with aligned bilingual multi-word terms.

Chinese and Japanese tokenization on patent sentences

• Examples of terms in JPO¹ Chinese—Japanese patent sentences are tokenized at different levels of granularity. Segmentation tools used are Stanford² for Chinese and Juman³ for Japanese.

Language Sentence 该/钽阳/极体/通常/是/烧结/的/。 Chinese Japanese タンタル/陽極/ボディ/は/、/ 通常/、/ 焼結/さ/れて/いる/。 Chinese 贴片/52/-/58/也/通过/导线/连接/到/系统/控制器/30/。 パッチ/52/~/58/は/、/また/、/電線/に/よって/シ ステム/コント/ローラ/30/に/接続/さ/れる/。 在/第一/热/处理/之后/,/氧化物/半导体层/变成/缺氧/的/氧化物/半导 Chinese 体/, /即/, /电阻率/变得/更低/。 酸化/物/半導体/層/は/、/第/1/の/加 熱/処 理/後/に/<mark>酸素/欠乏</mark>/型/と/なり/、/低/抵抗/化/する/。

Monolingual multi-word term extraction using C-value

- The C-value is a commonly used automatic domain-independent method for multi-word term extraction. This method has two main parts: a linguistic part and a statistical part.
 - The linguistic pattern we use is the regular expression⁴: $(Adjective|Noun)^+ Noun$
 - The statistical part, the measure of termhood, called the C-value, is given by the following formula:

Chinese or Japanese sentences	Extracted monolingual terms
在p 该pt 方法mn 中 lc ,pu 能够 wv 得到 wv 从 p	心脏 周期
心脏;nn 周期;nn 内和 的peg 心收缩;nn 期;nn 到;vv	'cardiac cycle'
心wn 舒张wv 期wn 之间uc 的peg 血液wn 移动wv	心收缩 期
的#DEC 1 #CD 个#M 以上#LC 的#DEG 图像#NN 。 #PU	'systole'
	心臓 周期
この/指示詞 方法/名詞 に/動詞 おいて/動詞 は/問詞 、/特殊	'cardiac cycle'
心臓/名詞 周期/名詞 内/接尾辞 の/助詞 心/名詞 収縮/名詞	心収縮期
期/名詞 から/問詞 心/名詞 拡張/名詞 期/名詞 まで(問詞	'systole'
の/動詞 間/名詞 の/助詞 血液/名詞 移動/名詞 の/助詞 1/名詞	心拡張期
枚/接尾辞 以上/接尾辞 の/助詞 画像/名詞 が/助詞 得/動詞 ら	'diastole'
れる/接尾辞。/特殊	血液 移動
	'blood moving'

- We re-tokenize such candidate terms in the corpus by enforcing the extracted monolingual multi-word terms to be considered as one token. Each candidate multi-word term is re-tokenized (aligned) with markers.

Bilingual multi-word term extraction

- We use the open source implementation of the sampling-based approach, Anymalign [A. Lardilleux and Y. Lepage, 2009].
 - consider multi-word to multi-word terms (green √) filtering by thresholds, ratio of lengths in words, and components of the bilingual multi-word terms
 - We use kanji-hanzi conversion method (Unihan Mapping Data, Langconv Traditional-Simplified Conversion data, Hanzi-kanji conversion) (blue $\sqrt{\ }$).

http://lotus.kuee.kyoto-u.ac.jp/WAT/patent/index.html

 – consider one side is multi-word term (red √) filtering by thresholds, ratio of lengths in words and components of the bilingual multi-word terms

Extract or not	Correct or not	Chinese	Japanese	P(t s)	P(s t)
0	√ √	接口电子线路	インタフェース電子回路	0.923077	0.928571
		顶盖主体	キャッフ_本体	1.000000	0.833333
	$\sqrt{}$	冷却层	冷却層	1.000000	0.951220
		薄_膜片	薄膜シート	1.000000	1.000000
000000	$\sqrt{}$	肺气肿	肺気腫	0.818182	0.900000
\bigcirc	*	激振电极	主に形成	0.861538	0.982456
\bigcirc	*	芯片_级_控制_手机_模块	チップレベル	1.000000	1.000000
×		废热	 廃 熱	0.844444	0.240506
×	\checkmark	变速 机	変速機	1.000000	0.005988
×		壁部	壁部	0.948247	0.677804
×		核酸	核酸	0.974392	
×		极板	極板		1.000000
×		薄膜	薄膜	0.197531	0.058252
×	$\sqrt{}$	贵_金属	貴金属	0.990548	0.984962
×		供油路	給油路	1.000000	1.000000
×		输入输出	入出力	0.952030	0.811321
×		制动液	ブレーキ液	0.985437	0.902222
×		甲醛	ホルムアルデヒド	0.997275	
×		存储器_控制器	メモリコントローラ	0.968831	0.917589
×		枢轴_板	ピボットプレート	0.977011	
×	*	切换_步骤	Handover	1.000000	
×	*	亭	キオスクニ端末	1.000000	1.000000
×	*	飞行物	前記_飛行_体	1.000000	1.000000
×	*	总能量消耗量	総計	1.000000	1.000000

• We re-tokenize parallel training corpus with extracted bilingual multi-word terms. Each multi-word term is re-tokenized (aligned) with markers.

Experiments and results

 Baseline (zh→ja) JPO corpus (lines) training: 100,000, tuning: 500, test: 1,000 and 2,000

 Monolingual multi-word term are extracted from training data: Chinese: 81,618 and Japanese: 93,105

- SMT experiments
 - Baseline system (no re-tokenization)
 - Several systems based on re-tokenized training data using different number of bilingual multi-word terms.

	Filtering by thresholds (a)			Filtering by thresholds (a) + the ratio of lengths + the components (b) + kanji-hanzi conversion (c)			
Thresholds	# of bilingual multi-word terms (a)	BLEU	p-value		# of bilingual multi-word terms (a + b + c)	BLEU	p-value
≥ 0.0	52,785 (35%)	32.44	> 0.05	48,239 (63%)	49,474 (70%)	33.19	< 0.05
≥ 0.1	31,795 (52%)	32.23	> 0.05	29,050 (68%)	30,516 (78%)	33.09	< 0.05
≥ 0.2	27,916 (58%)	32.00	> 0.05	25,562 (75%)	27,146 (83%)	33.12	< 0.05
Baseline (1,000)	-	32.35	-	-	-	32.35	-
≥ 0.3	25,404 (63%)	33.08	< 0.01	23,321 (78%)	25,006 (83%)	33.25	< 0.01
≥ 0.4	23,515 (72%)	32.77	< 0.05	21,644 (80%)	23,424 (84%)	33.31	< 0.01
≥ 0.5	21,846 (76%)	33.02	< 0.01	20,134 (85%)	22,000 (88%)	33.23	< 0.01
≥ 0.6	20,248 (78%)	33.32	< 0.01	18,691 (88%)	20,679 (89%)	33.75	< 0.01
≥ 0.7	18,759 (79%)	32.85	< 0.01	17,340 (88%)	19,460 (90%)	33.41	< 0.01
≥ 0.8	17,311 (79%)	33.25	< 0.01	16,001 (89%)	18,265 (90%)	33.38	< 0.01
≥ 0.9	15,464 (80%)	33.20	< 0.01	14,284 (92%)	16,814 (93%)	33.43	< 0.01

	Consid	lering one side multi-wor	d tarms ± filtering by			
	Considering one side multi-word terms + filtering by constraints (d) + (a + b + c)					
Thresholds	# of one side multi-word terms	# of filtered one side multi-word terms (d)	# of combination of multi-word terms (a + b + c + d)	BLEU	p-value	
≥ 0.0	72,428 (2%)	27,116 (40%)	75,425 (64%)	32.55	> 0.05	
≥ 0.1	18,395 (7%)	7,570 (55%)	37,059 (78%)	33.36	< 0.01	
≥ 0.2	14,179 (12%)	6,031 (62%)	32,224 (85%)	33.20	< 0.01	
≥ 0.3	11,849 (15%)	5,161 (70%)	29,280 (90%)	33.41	< 0.01	
≥ 0.4	10,259 (17%)	4,537 (76%)	27,125 (90%)	33.37	< 0.01	
≥ 0.5	9,069 (17%)	4,050 (76%)	25,270 (90%)	33.63	< 0.01	
≥ 0.6	7,875 (30%)	3,575 (76%)	23,522 (93%)	34.27	< 0.01	
≥ 0.7	6,900 (30%)	3,088 (80%)	21,874 (93%)	33.90	< 0.01	
≥ 0.8	6,026 (30%)	2,726 (80%)	20,318 (93%)	33.85	< 0.01	
≥ 0.9	5,062 (30%)	2,275 (82%)	18,484 (95%)	33.75	< 0.01	

Test is 2,000 sentences (zh) | Evaluation result Baseline 32.29 Re-tokenization 33.61

(p-value < 0.01)

⁴Pattern for Chinese: $(JJ|NN)^+NN$, pattern for Japanese: (形容詞 | 名詞)⁺名詞. 'JJ' and '形容詞' are codes for adjectives, 'NN' and '名詞' are codes for nouns in the Chinese and the Japanese taggers that we use.

http://nlp.ist.i.kyoto-u.ac.jp/index.php?JUMAN

²http://nlp.stanford.edu/software/segmenter.shtml

