
KyotoEBMT System Description for the 1st Workshop on
Asian Translation

John Richardson† Fabien Cromières‡ Toshiaki Nakazawa‡ Sadao Kurohashi†
†Graduate School of Informatics, Kyoto University, Kyoto 606-8501

‡Japan Science and Technology Agency, Kawaguchi-shi, Saitama 332-0012
john@nlp.ist.i.kyoto-u.ac.jp, {fabien, nakazawa}@pa.jst.jp,

kuro@i.kyoto-u.ac.jp

Abstract

This paper introduces the Ky-
otoEBMT Example-Based Machine
Translation framework. Our system
uses a tree-to-tree approach, employing
syntactic dependency analysis for
both source and target languages
in an attempt to preserve non-local
structure. The effectiveness of our
system is maximized with online ex-
ample matching and a flexible decoder.
Evaluation demonstrates BLEU scores
competitive with state-of-the-art SMT
baselines. The system implementation
is available as open-source.

1 Introduction

Corpus-based approaches have become a ma-
jor focus of Machine Translation research.
We present here a fully-fledged Example-
Based Machine Translation (EBMT) plat-
form making use of both source-language
and target-language dependency structure.
This paradigm has been explored compar-
atively less, as studies on Syntactic-based
SMT/EBMT tend to focus on constituent
trees rather than dependency trees, and
on tree-to-string rather than tree-to-tree ap-
proaches. Furthermore, we employ separate
dependency parsers for each language rather
than projecting the dependencies from one lan-
guage to another, as in (Quirk et. al, 2005).

The dependency structure information is
used end-to-end: for improving the quality
of the alignment of the translation examples,
for constraining the translation rule extraction
and for guiding the decoding. We believe that
dependency structure, which considers more
than just local context, is important in order
to generate fluent and accurate translations

of complex sentences across distant language
pairs.

Our experiments focus on technical do-
main translation for Japanese-Chinese and
Japanese-English, however our implementa-
tion is applicable to any domain and language
pair for which there exist translation examples
and dependency parsers.

A further unique characteristic of our sys-
tem is that, again contrary to the majority of
similar systems, it does not rely on precompu-
tation of translation rules. Instead it matches
each input sentence to the full database of
translation examples before extracting trans-
lation rules online. This has the merit of max-
imizing the information available when creat-
ing and combining translation rules, while re-
taining the ability to produce excellent trans-
lations for input sentences similar to an exist-
ing translation example.

The system is mostly developed in C++ and
incorporates a web-based translation interface
for ease of use. The web interface (see Fig-
ure 1) also displays information useful for error
analysis such as the list of translation exam-
ples used. Experiments are facilitated through
the inclusion of a curses-based graphical in-
terface for performing tuning and evaluation.
The decoder supports multiple threads.

The system has been made avail-
able as open-source. The code can be
downloaded from http://nlp.ist.i.kyoto-
u.ac.jp/kyotoebmt/.

2 System Overview
Figure 2 shows the basic structure of the Ky-
oto EBMT translation pipeline.

The training process begins with parsing
and aligning parallel sentences from the train-
ing corpus. Alignment uses a Bayesian sub-
tree alignment model based on dependency

83
Proceedings of the 1st Workshop on Asian Translation (WAT2014), pages 83‒88,

Tokyo, Japan, 4th October 2014.

Figure 1: A screenshot of the web interface
showing a Japanese-English translation. The
interface provides the source and target side
dependency tree, as well as the list of exam-
ples used with their alignments. The web in-
terface facilitates easy and intuitive error anal-
ysis, and can be used as a tool for computer-
aided translation.

trees. This contains a tree-based reorder-
ing model and can capture non-local reorder-
ings, which sequential word-based models of-
ten cannot handle effectively. The alignments
are then used to build an example database
(‘translation memory’) containing ‘examples’
or ‘treelets’ that form the hypotheses to be
combined during decoding.

Translation is performed by first parsing
an input sentence then searching for treelets
matching entries in the example database.
The retrieved treelets are combined by a de-
coder that optimizes a log linear model score.
Finally, a reranker select an optimal trans-
lation in the n-best list provided by the de-
coder using additional non-local features (see
section 6).

In order to be more robust with respect to
parse errors, the input sentence can be parsed
into a k-best list of posible parses. Each parse
is then translated separately and all transla-
tions are merged before the final reranking
step (see section 7).

The example retrieval and decoding steps
are explained in more detail in sections 3 and
4 respectively. The choice of features and the
tuning of the log linear model is described in

Figure 2: The translation pipeline can be
roughly divided in 3 steps. Step 1 is the cre-
ation of the example database, trained from
a parallel corpus. Step 2 is the k-best pars-
ing of an input sentence and the generation
of k sets of initial hypotheses. Step 3 consists
in decoding and reranking. The tuning of the
weights for decoding and reranking is done by
a modified version of step 3. The double ar-
rows indicate the parallel processing of each of
the k parse of the input sentence.

section 5.
Figure 3 shows the process of combining ex-

amples matching the input tree to create an
output sentence.

3 Example retrieval and translation
hypothesis construction

An important characteristic of our system is
that we do not extract and store translation
rules in advance: the alignment of translation
examples is performed offline. However, for a
given input sentence i, the steps for finding
examples partially matching i and extracting
their translation hypotheses is an online pro-
cess. This approach could be considered to be
more faithful to the original EBMT approach
advocated by Nagao (1984). It has already
been proposed for phrase-based (Callison-
Burch et al., 2005), hierarchical (Lopez, 2007),
and syntax-based (Cromières and Kurohashi,
2011) systems. It does not however, seem to
be very commonly integrated in syntax-based
MT.

This approach has several benefits. The first

84

!"

#$%&"

!""

#$%#&''("

')"

#*!)+,!-')"

.!/01)$"

'()234"

*+2546,-.274"

!284"

/2946 02:4"

#$%&2;4"

*$!<"

!"

=0$6 #$%#&''("

')"

#*!)+,!-')"

.!/01)$"

>)?@#6A*$$6 B@#?@#6A*$$6

C%!.?,$6D!#!&!+$6

,-."

'()"

*6 1"

/6 06

*$!<"

!"

E$6 &''(6

2F54" 2F74"

2F54" 2F74"

23"
?!?$*+"

2F84" 2F84"2F84"

*+6 =0$6

2GBBA4"

2F54"

2F74"

2F84"

Figure 3: The process of translation. The source sentence is parsed and matching subtrees from
the example database are retrieved. From the examples, we extract translation hypotheses than
can contain optional target words and several position for each non-terminals. For example the
translation hypothesis containing “textbook” has three possible position for the non-terminal X3
(as a left-child before “a”, as a left-child after “a” or as a right-child). The translation hypotheses
are then combined during decoding. Choice of optional words and final Non-Terminal positions
is also done during decoding.

is that we are not required to impose a limit
on the size of translation hypotheses. Systems
extracting rules in advance typically restrict
the size and number of extracted rules for fear
of becoming unmanageable. In particular, if
an input sentence is the same or very similar
to one of our translation examples, we will be
able to retrieve a perfect translation. A second
advantage is that we can make use of the full
context of the example to assign features and
scores to each translation hypothesis.

The main drawback of our approach is that
it can be computationally more expensive to
retrieve arbitrarily large matchings in the ex-
ample database online than it is to match pre-
computed rules. We use the techniques de-
scribed in (Cromières and Kurohashi, 2011)
to perform this step as efficiently as possible.

Once we have found an example translation
(s, t) for which s partially matches i, we pro-
ceed to extract a translation hypothesis from

it. A translation hypothesis is defined as a
generic translation rule for a part p of the in-
put sentence that is represented as a target-
language treelet, with non-terminals repre-
senting the insertion positions for the transla-
tions of other parts of the sentence. A trans-
lation hypothesis is created from a translation
example as follows:

1. We project the part of s that is matched
into the target side t using the alignment
of s and t. This is trivial if each word of
s and t is aligned, but this is not typi-
cally the case. Therefore our translation
hypotheses will often have some target
words/nodes marked as optionals: this
means that we will decide if they should
be added to the final translation only at
the moment of combination.

2. We insert the non-terminals as child
nodes of the projected subtree. This is

85

Figure 4: A translation hypothesis endoded
as a lattice. This representation allows us to
handle efficiently the ambiguities of our trans-
lation rules. Note that each path in this lat-
tice corresponds to different choices of inser-
tion position for X2, morphological forms of
“be”, and the optional insertion of “at”.

simple if i, s and t have the same struc-
ture and are perfectly aligned, but again
this is not typically the case. A conse-
quence is that we will sometimes have sev-
eral possible insertion positions for each
non-terminal. The choice of insertion po-
sition is again made during combination.

4 Decoding
After having extracted translation hypotheses
for as many parts of the input tree as possible,
we need to decide how to select and combine
them. Our approach here is similar to what
has been proposed for Corpus-Based Machine
Translation. We first choose a number of fea-
tures and create a linear model scoring each
possible combination of hypotheses (see Sec-
tion 5). We then attempt to find the combi-
nation that maximizes this model score.

The combination of rules is constrained by
the structure of the input dependency tree. If
we only consider local features1, then a simple
bottom-up dynamic programming approach
can efficiently find the optimal combination
with linear O(|H|) complexity2. However,
non-local features (such as language models)
will force us to prune the search space. This
pruning is done efficiently through a varia-
tion of cube-pruning (Chiang, 2007). We
use KenLM3 (Heafield, 2011) for computing
the target language model score. Decoding
is made more efficient by using some of the
more advanced features of KenLM such as
state-reduction ((Li and Khudanpur, 2008),
(Heafield et al., 2011)) and rest-cost estima-
tions(Heafield et al., 2012).

1The score of a combination will be the sum of the
local scores of each translation hypothesis.

2H = set of translation hypotheses
3http://kheafield.com/code/kenlm/

Compared with the original cube-pruning
algorithm, our decoder is designed to handle
an arbitrary number of non-terminals. In ad-
dition, as we have seen in Section 3, the trans-
lation hypotheses we initially extract from ex-
amples are ambiguous in term of which target
word is going to be used and which will be the
final position of each non-terminal. In order to
handle such ambiguities, we use a lattice-based
internal representation that can encode them
efficiently (see Figure 4). This lattice represen-
tation also allows the decoder to make choices
between various morphological variations of a
word (e.g. be/is/are). We use the decoding
algorithm described in (Cromieres and Kuro-
hashi, 2014).

5 Features and Tuning
During decoding we use a linear model to score
each possible combination of hypotheses. This
linear model is based on a linear combination
of both local features (local to each translation
hypothesis) and non-local features (such as a
5-gram language model score of the final trans-
lation). The decoder considers in total a com-
bination of 42 features, a selection of which are
given below.

• Example penalty and example size

• Translation probability

• Language model score

• Optional words added/removed

The optimal weights for each feature are es-
timated using the implementation of k-best
batch MIRA (Cherry and Foster, 2012) in-
cluded in Moses.

6 Reranking
We reranked the n-best output of our system
using an additional two language models: a
standard 7-gram language model with Mod-
ified Kneser-Ney smoothing and a Recurrent
Neural Network Language Model (RNNLM)
(Mikolov et. al, 2010). The RNNLM model
was trained with hidden layer size 200, and
5000 sentences from the training fold were
used as validation data.

Reranking was conducted by first calculat-
ing the various language model scores for each

86

translation in the n-best list. These features
were added to those used in the first round of
tuning, then one final iteration of tuning was
run. The tuning algorithm and settings were
the same as for standard tuning. This retun-
ing step was added in order to find an optimal
combination of the two additional LMs with
related features such as sentence length and
the score given by the 5-gram language model
used inside the decoder.

7 K-best parsing

We found that the quality of the source-side
dependency parsing had an important impact
on translation quality. Unfortunately, pars-
ing errors are unavoidable. Chinese parsing is
maybe especially challenging and our Chinese
parser still produces a significant number of
parsing errors. In order to mitigate this prob-
lem, we use a k-best list of parses of the input
sentence. Each parse is translated in paral-
lel, and the list of translation thus obtained is
merged before the reranking step. In the fu-
ture, we intend to move from a k-best list rep-
resentation of multiple parses to a more com-
pact and efficient forest representation. Fur-
thermore, we will also have to consider multi-
ple parses for all the translation examples (and
not just the input sentence).

8 Experiments

The following dependency parsers were used.
The scores in parentheses are the approximate
parsing accuracies (micro-average), which
were evaluated by hand on a random subset of
sentences from the test data. The parsers were
trained on domains different to those used in
the experiments.

• English: NLParser4 (92%) (Charniak and
Johnson, 2005)

• Japanese: KNP (96%) (Kawahara and
Kurohashi, 2006)

• Chinese: SKP (88%) (Shen et al., 2012)

K-best dependency parsing was done with k
set to 20.

4Converted to dependency parses with in-house
tool.

8.1 Results
The results shown are for evaluation on the
test set after tuning. Tuning was conducted
over 20 iterations on the development set using
an n-best list of length 500.

9 Conclusion

We have described the Kyoto example-based
translation system. It uses both source and
target dependency analysis, as well as online
example retrieving, allowing the availability of
full translation examples at translation time.

We believe that the use of dependency pars-
ing is important for accurate translation across
distant language pairs, especially in settings
such as ours with many long sentences. We
have designed a complete translation frame-
work around this idea, using dependency-
parsed trees at each step from alignment to
example retrieval to example combination.

References
Eugene Charniak and Mark Johnson. 2005.

Coarse-to-Fine n-Best Parsing and MaxEnt Dis-
criminative Reranking. In Proceedings of the
43rd Annual Meeting of the Association for
Computational Linguistics, ACL 2005.

Fabien Cromières and Sadao Kurohashi. 2011. Ef-
ficient retrieval of tree translation examples for
syntax-based machine translation. In Proceed-
ings of the 2011 Conference on Empirical Meth-
ods in Natural Language Processing.

Isao Goto, Ka Po Chow, Bin Lu, Eiichiro Sumita
and Benjamin Tsou. 2013. Overview of
the Patent Machine Translation Task at the
NTCIR-10 Workshop. In Proceedings of the 10th
NTCIR Workshop Meeting on Evaluation of In-
formation Access Technologies (NTCIR-10).

Daisuke Kawahara and Sadao Kurohashi. 2006.
A Fully-Lexicalized Probabilistic Model for
Japanese Syntactic and Case Structure Anal-
ysis. In Proceedings of the Human Language
Technology Conference of the NAACL.

Makoto Nagao. 1984. A framework of a mechan-
ical translation between Japanese and English
by analogy principle. In A. Elithorn and R.
Banerji. Artificial and Human Intelligence.

Toshiaki Nakazawa and Sadao Kurohashi. 2012.
Alignment by bilingual generation and mono-
lingual derivation. In Proceedings of COLING
2012.

87

Language Pair Reranking BLEU RIBES HUMAN
JA–EN No 20.60 70.12 21.50

Yes 21.07 69.90 25.00
EN–JA No 29.76 75.21 33.75

Yes 31.09 75.96 38.00
JA–ZH No 27.21 79.13 -0.75

Yes 27.67 78.83 -8.75
ZH–JA No 33.57 80.10 6.00

Yes 34.75 80.26 7.50

Table 1: Scores

Mo Shen, Daisuke Kawahara and Sadao Kuro-
hashi. 2012. A Reranking Approach for De-
pendency Parsing with Variable-sized Subtree
Features. In Proceedings of 26th Pacific Asia
Conference on Language Information and Com-
puting.

Chris Callison-Burch, Colin Bannard, and Josh
Schroeder. 2005. Scaling phrase-based sta-
tistical machine translation to larger corpora
and longer phrases. In Proceedings of the 43rd
Annual Meeting on Association for Computa-
tional Linguistics, pages 255–262. Association
for Computational Linguistics, 2005.

Colin Cherry and George Foster. 2012. Batch Tun-
ing Strategies for Statistical Machine Transla-
tion. In HLT-NAACL, 2012.

David Chiang. 2007. Hierarchical phrase-based
translation. In Computational Linguistics.

Cromieres Fabien and Sadao Kurohashi. 2014.
Translation Rules with Right-Hand Side Lat-
tices. In Proceedings of EMNLP 2014

Kenneth Heafield. 2011. KenLM: faster and
smaller language model queries. In Proceedings
of the EMNLP 2011 Sixth Workshop on Statis-
tical Machine Translation, 2011.

Kenneth Heafield, Hieu Hoang, Philipp Koehn,
Tetsuo Kiso, and Marcello Federico. 2011.
Left language model state for syntactic ma-
chine translation. In Proceedings of the Inter-
national Workshop on Spoken Language Trans-
lation, 2011.

Kenneth Heafield, Philipp Koehn, and Alon Lavie.
2012. Language model rest costs and space-
efficient storage. In Proceedings of the Joint
Conference on Empirical Methods in Natural
Language Processing and Computational Natu-
ral Language Learning, 2012.

Zhifei Li and Sanjeev Khudanpur. 2008. A scal-
able decoder for parsing-based machine transla-
tion with equivalent language model state main-
tenance. In Proceedings of the Second Workshop

on Syntax and Structure in Statistical Transla-
tion. Association for Computational Linguistics,
2008.

Adam Lopez. 2007. Hierarchical phrase-based
translation with suffix arrays. In EMNLP-
CoNLL, 2007.

Tomas Mikolov, Martin Karafiat, Lukas Bur-
get, Jan Cernocky and Sanjeev Khudanpur.
2010. Recurrent Neural Network Based Lan-
guage Model. In Proceedings of the 11th Annual
Conference of the International Speech Commu-
nication Association, 2010.

Chris Quirk, Arul Menezes, and Colin Cherry.
2005. Dependency Treelet Translation: Syn-
tactically Informed Phrasal SMT. In Proceed-
ings of the 43rd Annual Meeting on Association
for Computational Linguistics. Association for
Computational Linguistics, 2005.

88

